Workshop PICO: The 2024 Innovations in VR and Mixed Reality.

On September 18th, Emile, one of our lead developers, had the opportunity to participate in a workshop organized by MATTS DIGITAL, focused on the latest innovations from PICO, a key player in the virtual reality (VR) headset market. This day allowed us to explore PICO’s ambitions for 2024 and the products that will shape the industry.

PICO, an expanding player

Since its arrival on the European market in 2017 with the PICO Neo and Goblin models, PICO has continuously innovated, launching seven models in just six years, including the Neo 2 (2019) and Neo 3 Pro (2021). Today, the brand has established itself as one of the three leading VR headset manufacturers in the world, with particular expertise in standalone headsets.

PICO primarily targets the B2B market, particularly in the sectors of education, industry, and healthcare. With headsets offering both 3DoF (three degrees of freedom) and 6DoF (six degrees of freedom) experiences, the brand caters to users seeking more immersive interactions in virtual environments. The 6DoF, for example, allows for full movement in space, while the 3DoF restricts interaction to head rotation.

One of PICO’s strategic ambitions is to move from the proof of concept (POC) stage to large-scale deployments. This includes managing fleets of headsets for businesses, a crucial aspect for organizations looking to integrate VR into their processes on a large scale. Among PICO’s competitive advantages are the absence of personal data collection, the ability to use headsets without needing to create a user account, and the option to customize headsets on demand.

PICO 4 Ultra: performance at its peak.

During the workshop, PICO unveiled its latest model, the PICO 4 Ultra, designed to compete directly with Meta’s Quest 3. Equipped with a Qualcomm Snapdragon XR2 processor, 12 GB of RAM, and 256 GB of storage, this headset boasts impressive technical specifications. It is compatible with OpenXR, a standard that facilitates the development of cross-headset applications, and supports Wi-Fi 7 for ultra-fast connectivity. With integrated mixed reality features (access to the front camera, hand tracking, etc.), the PICO 4 Ultra provides a high-quality immersive experience.

Compared to the Quest 3, the PICO 4 Ultra stands out with greater memory, a better front camera, a larger screen, and extended battery life. Although its price is higher (€695 compared to €450 for the Quest 3), it includes all the necessary features without additional costs, making it a turnkey solution for businesses and minimizing barriers to adoption.

PICO 4 Tracker: innovation in motion

Among the other new features unveiled, the PICO 4 Tracker particularly caught attention. This motion sensor, weighing only 14g, is compatible with all PICO headsets. With a battery life of 25 hours and calibration in under 10 seconds, it offers superior performance compared to its direct competitor, the HTC Ultimate Tracker. Priced competitively at €89 per pair (compared to €239 for the HTC model), this tracker could quickly establish itself in the market.

Software solutions tailored to the needs of businesses.

In addition to hardware, PICO provides software solutions designed to optimize the use of its headsets. One of these solutions allows users to scan and share environments in mixed reality for multiplayer applications (LBE – Location Based Entertainment). Although this feature requires a server or cable for sharing, it opens up numerous possibilities for businesses looking to create immersive collaborative experiences.

The PICO Business Suite offers comprehensive tools for managing a fleet of headsets locally. Content synchronization, kiosk mode, remote communication: everything is designed to simplify the management of multiple headsets in professional contexts such as training or presentations. PICO also announced the upcoming launch at the end of the year of the Business Device Manager, a solution similar to ArborXR, allowing for remote management of headset updates and commands.

The PICO 4: a major asset for VR and mixed reality.

The PICO 4 stands out in both virtual reality and mixed reality. In VR, it delivers superior performance thanks to its Qualcomm Snapdragon XR2 processor and 128 GB of memory. These features make it an ideal tool for intensive applications such as training, simulation, and virtual collaboration. The comfort and ergonomics of the headset, with optimized weight distribution, allow for long immersive sessions without discomfort.

In mixed reality, the high-resolution front camera of the PICO 4 enables seamless integration of virtual elements into the real world. This feature is particularly suited for sectors like architecture, where 3D plans can be overlaid on real environments, or maintenance, where technicians can follow instructions in real-time. Thanks to the OpenXR standard, applications developed for the PICO 4 are compatible with a wide range of headsets, making this model particularly attractive for businesses.

Conclusion

This workshop confirmed that PICO continues to establish itself as a leader in the virtual reality market, with a strong B2B focus. Their solutions, both hardware and software, meet the specific needs of companies looking to deploy VR and mixed reality on a large scale. With products like the PICO 4 Ultra and the PICO 4 Tracker, the brand is positioning itself as a key player to watch in the coming years.

Mixed Reality vs Virtual Reality in Training: What Additional Potential?

In the context of training, Virtual Reality (VR) offers fully immersive experiences by plunging learners into simulated environments. Mixed Reality (MR), which combines virtual elements with the real world, takes this a step further. By adding interactions between the virtual and the real, MR provides new perspectives for more effective, collaborative, and immediately applicable training. With the arrival of new headsets, such as those from Meta and Pico, this technology has also become very financially accessible, facilitating its adoption in the professional environment.

Interaction with the real environment: a learning experience rooted in reality.

Unlike VR, which isolates the learner in a completely virtual world, MR allows for the integration of digital elements within the real environment. The learner can still see, hear, and interact with their physical surroundings while receiving additional information through virtual elements.

In the field of training, this translates into situations where a learner can use real tools while following instructions displayed in mixed reality. For example, a trainee electrician can manipulate a real distribution board while seeing virtual visual cues appear regarding the various steps to follow or safety points to check. This continuity between the virtual and the real allows for better skill acquisition, as the learner is in direct contact with the objects they will use in their professional daily life.

Collaborating in real-time on training tasks.

One of the main advantages of mixed reality (MR) over virtual reality (VR) is the ability for multiple users to interact together on the same virtual object while remaining grounded in their physical environment. This enables a seamless collaborative approach.

Let’s take the example of training in industrial maintenance. Multiple technicians can be in the same room and simultaneously observe a virtual model of the machine they are learning to repair. Each technician can propose actions, test procedures, or discuss solutions to be adopted while seeing the adjustments made in real time. This type of collaboration, enhanced by mixed reality (MR), allows learners to work together effectively and interactively, sharing a common object of study.

Using physical objects while integrating virtual data

One of the aspects that fundamentally differentiates mixed reality (MR) from virtual reality (VR) is the ability to interact with physical objects while receiving virtual data. In MR, the learner can more easily use real tools or equipment while being guided by real-time virtual information.

For example, during an automotive maintenance training session, a learner can manipulate a real engine while seeing virtual information projected onto the various parts. This information can include assembly instructions, technical diagrams, or specific points of attention. This allows for a smooth integration of theory and practice, providing training that is both realistic and instructive.

Remote assistance: the expert at your fingertips.

Another major advantage of mixed reality is the ability to integrate real-time remote assistance from an expert. With mixed reality, a trainer or expert can monitor the learner’s actions live and provide precise guidance without being physically present.

For example, in an industrial equipment maintenance training, a remote expert can observe, through a video stream, what the learner sees through their mixed reality glasses. They can then directly annotate the image perceived by the learner, point out specific areas of the machine, or provide verbal and visual instructions to correct an error or guide the learner through a complex procedure. This ability to receive personalized assistance in real-time without being on-site is a significant advantage for training, especially when qualified human resources are limited.

Enhancing immersion while staying connected to the real world.

Unlike VR, where the user is completely disconnected from their physical environment, mixed reality maintains a connection to it, which is essential in certain training scenarios where interaction with real equipment or colleagues is necessary.

In a fire safety training scenario, for example, the learner can see virtual flames appearing in a real physical environment while having access to guidance on the actions to take, risks to avoid, or the proper use of a fire extinguisher. Learning occurs in complete immersion, but within an environment that remains grounded in the learner’s professional reality, providing a better transition to real-world situations.

Real-time feedback for continuous adaptation.

Mixed reality (MR) also allows for immediate and contextual feedback. During training, learners can receive advice, alerts, or corrections in real-time, directly integrated into their environment. This enhances hands-on learning by helping learners correct their actions without interrupting their workflow.

Take the case of a welding training: if the learner makes a technical mistake, mixed reality (MR) can instantly display corrective indications directly on the piece being worked on, such as guide lines or messages indicating poorly welded areas. This immediate feedback, based on real actions, helps reinforce learning through experience.

By allowing simultaneous interaction with real and virtual objects, mixed reality (MR) not only anchors learning in the reality of the work environment but also enhances collaboration and provides real-time remote assistance. For training that requires handling real equipment or facilitating exchanges between teams, MR emerges as a flexible, realistic, and immediately applicable technology.